Direct Modulation of Lanthanide Emission at Sub-Lifetime Scales

Sinan Karaveli, Aaron J. Weinstein, and Rashid Zia*

School of Engineering, Brown University, Providence, Rhode Island 02912, United States

Supporting Information

ABSTRACT: The long lifetime of lanthanide emitters can present a challenge for conventional pump-based modulation schemes, where the maximum switching speed is limited by the decay time of the excited state. However, spontaneous emission can also be controlled through the local optical environment. Here, we demonstrate a direct modulation scheme enabled by dynamic control of the local density of optical states (LDOS). Specifically, we exploit the LDOS differences between electric and magnetic dipole transitions near a metal mirror and demonstrate that rapid nanometer-scale mirror displacements can modulate the emission spectra of trivalent europium ions within their excited state lifetime. The dynamic LDOS modulation presented here can be readily extended to faster optical modulation schemes and applied to other long-lived emitters to control the direction, polarization, and spectrum of spontaneous emission at subfemtosecond scales.

KEYWORDS: Europium, lanthanides, local density of optical states (LDOS), magnetic dipole transitions, modulation, photoluminescence

T

Published: April 18, 2013
Received: March 8, 2013
Revised: April 15, 2013

ACS Publications

2264 dx.doi.org/10.1021/nl400883r | Nano Lett. 2013, 13, 2264–2269

Nano Lett.

2269

Excited state population

\[\Gamma \]

LED could be desirable, especially for chip-scale integration,4 intensity: \(I \)

modulation, over all the observed modes. For conventional excitation-based decay rate into the laser2 or light-emitting diode (LED).3 Direct modulation of an be achieved by directly modulating the excitation source of a example using a Mach–Zehnder interferometer,1 but can also be achieved by directly modulating the excitation source of a laser2 or light-emitting diode (LED).3 Direct modulation of an LED could be desirable, especially for chip-scale integration,4 because it can be simpler as well as more space- and energy-efficient than external modulation. It is often assumed that the direct modulation of a light source is limited by the spontaneous emission lifetime.5 This is particularly problematic for lanthanide emitters as they have lifetimes on the order of milliseconds to hundreds of microseconds, which would restrict modulation speeds to the range of 1–10 kHz.

However, the spontaneous emission lifetime is not necessarily a fundamental limit. Erbium-doped silicon LEDs have been directly modulated faster than the intrinsic lifetime of erbium ions, up to speeds of 80 kHz, by quenching their emission with Auger processes.6,7 Temporarily increasing the nonradiative decay rate \(\Gamma_{\text{nr}}(t) \) helps to decrease the excited state lifetime and consequently turn off emission faster. This is similar to other excitation-based modulation schemes, where changes to the excitation rate \(\Gamma_{\text{exc}}(t) \) are used to control the excited state population \(N_{\text{exc}}(t) \) and thus the observed emission intensity: \(I(t) \propto N_{\text{exc}}(t) \sum \Gamma_{\text{rad}}(I) \), where \(\Gamma_{\text{rad}}(I) \) is the radiative decay rate into the \(n \)th optical mode and the sumation is taken over all the observed modes. For conventional excitation-based modulation, \(\sum \Gamma_{\text{rad}}(I) \) is essentially constant while the time-varying \(N_{\text{exc}}(t) \) can be controlled by a variety of factors, as highlighted by the rate equation: \(\frac{dN_{\text{exc}}}{dt} = (N_0 - N_{\text{exc}})\Gamma_{\text{exc}} - \frac{N_{\text{exc}}}{\tau} \), where \(N_0 \) is the total number of excitable emitters and the excited state lifetime is \(\tau = (\Gamma_{\text{nr}} + \sum \Gamma_{\text{rad}})^{-1} \). In this Letter, we demonstrate a proof-of-principle experiment for an alternative approach to achieve direct modulation of lanthanide emission. Rather than modulating the excited state population \(N_{\text{exc}}(t) \), we modify the local optical environment and directly modulate the emission rate \(\Gamma_{\text{rad}}(t) \) into different modes within the excited state lifetime. It is well-known that an emitter’s spontaneous emission depends both on its electronic states and the local density of optical states (LDOS) into which it may radiate.3 Engineering the LDOS of an emitter is commonly employed to enhance or inhibit spontaneous emission. For example, by placing an emitter within an optical cavity9 or near an optical antenna,10 it is possible to enhance emission rates, direct radiation, and control polarization. Using surface acoustic waves to modify photonic crystal cavities, emission wavelengths have also been tuned at rates approaching the emitter lifetime.11 More generally though, modifying the local optical environment can provide a way to modulate emission faster than the excited state lifetime. Once excited, an emitter’s radiation depends only on its instantaneous LDOS; when it emits, it will radiate into the available optical modes at that point in time. Therefore, unlike pump-based modulation which is limited by the rise and fall
time of the electronic state, dynamic optical control is fundamentally limited only by retardation effects. To demonstrate modulation within the excited state lifetime, we tune the emission spectra of trivalent europium-doped yttrium oxide (Eu^{3+}:Y_2O_3) using a moving mirror. Eu^{3+} ions are long lifetime emitters exhibiting several electric dipole (ED) and magnetic dipole (MD) radiative transitions over visible wavelengths,^22 as shown in Figure 1a. In addition to recent studies of MD emission,^13–15 these ions were used in the seminal experiments by Drexhage, Kunz, and Lukosz demonstrating lifetime variations near planar metal and dielectric surfaces.^6,17 The presence of a reflecting surface modifies the LDOS and, depending on its distance from the emitter, can either enhance or inhibit radiation.18 Interestingly, within any inhomogeneous environment (e.g., near a planar interface), the electric and magnetic LDOS differ.19 Due to self-interference effects, the LDOS for ED and MD transitions exhibit an inverse distance-wavelength dependence; namely for spectrally close ED and MD lines.22 Here, we exploit interfere the ED and MD transitions in Eu^{3+}:Y_2O_3 to unambiguously demonstrate dynamic LDOS-based emission modulation.

The luminescent sample was fabricated by cosputtering Eu_2O_3 and Y_2O_3 to deposit a 25 nm emitter layer of Eu^{3+}:Y_2O_3 on a quartz substrate, which was subsequently annealed at 1000 °C for 1 h. The moving mirror was made by evaporating a 10 nm Ti adhesion layer, 100 nm Au reflector layer, and 20 nm Y_2O_3 protection layer on a plano-convex lens with a 7.7 mm radius of curvature. This coated mirror was subsequently glued to a small piezoelectric actuator (Mad City Labs Inc., PZT1). The mirror-piezo assembly was mounted on a three-axis stage (see Figure 1b), which was used to center the mirror in the field of view of a 60X, 0.85 numerical aperture (NA) objective in an inverted microscope (Nikon, TE2000). The Newton ring interference fringes from the curved mirror surface were used to help align the system and ensure that the apex was centered on the excitation laser spot (532 nm, Coherent Verdi). A drop of deionized water was placed between the sample and mirror, increasing the refractive index; this directs more emission from the Eu^{3+} ions toward the mirror and thus enhances the LDOS modulation. The mirror was then slowly lowered toward the sample using the three-axis stage to a starting emitter-mirror distance less than 1 μm.

Using the piezoelectric actuator, the mirror was subsequently lowered toward the sample with 11.5 nm increments while acquiring the emission spectrum of Eu^{3+}:Y_2O_3 at each step. Figure 2a shows a color plot of the normalized emission spectra as a function of mirror displacement, Δd, from the starting position (see Supporting Information for a movie illustrating the dynamic modulation). To facilitate comparison, several of these spectra are plotted together in Figure 2b. Even for very small mirror displacements, the emission spectrum varies significantly. At Δd = −195 nm, the ^5D_{0}→^7F_2 ED transition (between 603 and 635 nm) dominates the emission spectrum, whereas at Δd = −287 nm, greater emission is observed from the ^5D_{0}→^7F_1 MD transition (between 580 and 603 nm).

The observed spectral variations in Figure 2a,b are consistent with previous experiments for separate Eu^{3+}:Y_2O_3 samples fabricated with different thickness emitter-mirror spacers and can be accurately predicted from the LDOS variations for ED and MD transitions at different wavelengths.22 These transitions can be modeled as isotropic ED and MD emitters located within a planar four-layer structure, and the radiative decay rates Γ^{ED} and Γ^{MD} can be calculated using the self-interference formalism of Chance, Prock, and Silbey:21

\[
\Gamma^{ED}/\Gamma_0 = \frac{1}{2}\left[\int_0^{\text{max}} \left(1 + R_{fj}^{p} + R_{lj}^{s} - 2\sqrt{R_{lj}^{p}R_{fj}^{s}}\right) \frac{1}{1 - R_{lj}^{p}R_{fj}^{s}} \right] \text{d}a
\]

\[
\Gamma^{MD}/\Gamma_0 = \frac{1}{2}\left[\int_0^{\text{max}} \left(1 - R_{lj}^{p} + R_{lj}^{s} + 2\sqrt{R_{lj}^{p}R_{lj}^{s}}\right) \frac{1}{1 - R_{lj}^{p}R_{lj}^{s}} \right] \text{d}a
\]

where \(R_{lj}^{p} = \text{for s-polarization; } R_{lj}^{s} = \text{for p-polarization; } R_{lj}^{p} = (l_j - l_j)/(l_j + l_j) \text{ and } R_{lj}^{s} = (e_j - e_j)/(e_j + e_j) \), \(l_j = d/(l_j + l_j) \text{ and } e_j = (\epsilon_j - \epsilon_j)/(\epsilon_j + \epsilon_j) \), \(d \) is the distance between the emitting film and the mirror, \(s_j \) is the distance of...
the emitter from the \(ij\) interface. \(u = k_0/k\) and \(l_0 = -i(n_0^2/n_2^2 - u^2)^{1/2}\) are the parallel and perpendicular components of the wavevector normalized to the emitter layer wavenumber, \(k = (2\pi/\lambda) n_2\). Here, the subscript indices 0, 1, 2, and 3, respectively, represent the gold mirror, water (\(n_1 = 1.33\)), Eu\(^{3+}:\)Y\(_2\)O\(_3\) (\(n_2 = 1.78\)), and quartz substrate (\(n_3 = 1.46\)) layers. The dispersive refractive index of gold (\(n_0\)) was modeled by the Brendel–Bormann model.\(^{23}\) For simplicity, we assume that the emitters are located at the center of the 25 nm Eu\(^{3+}:\)Y\(_2\)O\(_3\) layer (i.e., \(s_{31} = s_{33} = 12.5\) nm) and subsume the optical effects of the thin Y\(_2\)O\(_3\) mirror coating into the adjacent water layer. \(\Gamma_0\) is the intrinsic emission rate in a homogeneous medium with index \(n_2\).

Integrated to infinity, \(u_{\text{max}} = \infty\), eqs 1 and 2 describe the total radiative rate for ED and MD transitions into all modes and thus incorporate the total electric and magnetic LDOS respectively. These equations can also be used to calculate the modified emission rate into a subset of modes, that is, the partial LDOS. Specifically, setting \(u_{\text{max}} = \text{NA}/n_2\) allows us to calculate the modified radiation rate into the collection NA of our objective for different emitter-mirror separation distances, \(d\). As the observed emission intensity at each wavelength and mirror position is proportional to the radiative rate into the collected optical modes, \(I(\lambda,d) \propto \Gamma_{\text{rad}}(\lambda,d)\), eqs 1 and 2 can be used to calculate a normalized emission spectrum: \(I_n(\lambda,d) \equiv I(\lambda,d)/\int I(\lambda,d) d\lambda = \Gamma_{\text{rad}}(\lambda,d)/\int \Gamma_{\text{rad}}(\lambda,d) d\lambda\), where \(\Gamma_{\text{rad}}(\lambda,d)\) is either \(\Gamma^{\text{ED}}(\lambda,d)\) or \(\Gamma^{\text{MD}}(\lambda,d)\). We have previously shown that a reference emission spectrum obtained for a known optical environment, \(I_n(\lambda,d_{\text{ref}})\), can be used to predict the normalized emission spectra at different positions using: \(^{22}\)

\[
I_n(\lambda, d) = \frac{I_n(\lambda, d_{\text{ref}}) \Gamma_{\text{rad}}(\lambda, d)/\Gamma_{\text{rad}}(\lambda, d_{\text{ref}})}{\int I_n(\lambda, d_{\text{ref}}) \Gamma_{\text{rad}}(\lambda, d)/\Gamma_{\text{rad}}(\lambda, d_{\text{ref}}) d\lambda} \tag{3}
\]

Figure 2c shows the theoretical spectra calculated for a range of emitter–mirror distances. These spectra were obtained with eq 3 by using the normalized spectrum acquired from the bare sample prior to water and mirror addition (Figure 1a) as a reference. Note that there is good agreement between the experimental data and the theoretical spectra. Matching the calculated and measured spectra also allows us to estimate the emitter–mirror distance, and thus relate the relative displacement \(\Delta d\) of the open-loop piezoelectric actuator to an absolute distance \(d\). Despite the introduction of large background signals from both the water and the gold mirror in the experimental measurements, the predicted spectra in Figure 2d capture the dominant changes observed in the Eu\(^{3+}\) emission lines.

The strong dependence on mirror position seen in Figure 2 can be leveraged to rapidly direct Eu\(^{3+}\) emission into either the ED \(^5D_{0}\!\!→\!\!^7F_2\) or MD \(^5D_{0}\!\!→\!\!^7F_1\) transition. Using the piezoelectric actuator, the mirror is first brought to a height where the ratio of ED to MD emission changes strongly for small mirror displacements. Then, a 10 kHz sinusoidal voltage signal is applied to the piezo, causing the mirror to move up and down. While continuously pumping the ions with the excitation laser, MD and ED emission was simultaneously monitored using two photomultiplier tubes (Hamamatsu H7422–40P) with different band-pass filters covering the wavelength ranges of 855–959 nm and 605–635 nm, respectively. Figure 3 shows the intensity modulation as a function of time and thus mirror position. As expected from Figure 2 and the LDOS variations, light emission from the ED and MD transitions are inversely correlated. Every 50 \(\mu s\), the observed emission intensity shifts back and forth between ED and MD. However, unlike the normalized spectra in Figure 2, the observed intensity signals themselves can be difficult to interpret for a number of reasons. First and foremost, in addition to modifying the emission of the Eu\(^{3+}\) ions, the mirror motion also changes the pump intensity at the ions’ location and thus their excitation rate; consequently, the observed intensity variations may be the product of both excitation and emission modulation. As discussed earlier, there...
is also background luminescence from both the water and the gold mirror.

To demonstrate that the observed effect is a result of LDOS modification to Eu3+ emission, and not an artifact of background or pump variations, we performed pulsed-excitation time-resolved experiments. First, keeping the mirror position fixed, the pump laser is modulated with a mechanical chopper (Stanford Research Systems, SRS40) at a frequency of 1.5 kHz. Figure 4a shows that, after an initial fast decay attributed to background fluorescence, both the ED and MD emission exhibit a slow single exponential decay corresponding to a ~108 μs lifetime for the \(^{5}D_{0} \rightarrow ^{7}F_{1} \) ED and \(^{5}D_{0} \rightarrow ^{7}F_{2} \) ED transitions, respectively. Figure 4a also shows that, after an initial fast decay attributed to background fluorescence, the emission exhibits a slow single exponential decay corresponding to a ~108 μs lifetime for the \(^{5}D_{0} \rightarrow ^{7}F_{2} \) ED transitions, red and blue dots respectively, for fixed mirror position. Single exponential fits (black lines) confirm that both transitions arise from the same excited state with a ~108 μs lifetime; fit lifetimes are 108.9 ± 1.2 μs and 107.2 ± 1.2 μs, respectively, for the ED and MD emission. (b) Experimental time-traces of the ED and MD emission obtained when the mirror is dithered at 7.5 kHz highlighting their inverse oscillations both during and after pulse excitation. Multiple oscillations observed on the decay after the pump ends are clear evidence of dynamic modulation within the excited state lifetime and are consistent with the theoretical fits (black lines) obtained using eq 4.

The modulation observed in Figure 4b can be accurately described by the same theoretical framework used to predict the emission spectrum at different mirror positions shown in Figure 2. To this end, we assume that the emitter–mirror separation distance varies sinusoidally with time: \(d(t) = d_{0} \sin(2\pi ft) + d_{0} \) where \(f \) is the mirror operation frequency (7.5 kHz), \(d_{0} \) is the amplitude of the mirror motion, and \(d_{0} \) is the center position about which the mirror oscillates. For each distance value, a normalized emission spectrum can be calculated and integrated over the wavelength ranges corresponding to the two passband filters. Assuming that the excited state lifetime remains constant, the time varying integrated intensity can be calculated as:

\[
I(t) = \left(\int_{\lambda} I_{0}(\lambda, d(t)) d\lambda \right) I_{0} e^{-t/\tau} + C
\]

where the excited state lifetime \(\tau = 108 \) μs and the detector dark counts \(C \) are obtained from fits to the fixed mirror position data in Figure 4a. \(I_{0} \) is the observed intensity at the start time for the fit (\(t = 0 \)). The best match to the experimental data is obtained for \(d_{0} = 249 \) nm and \(d_{0} = 16 \) nm, indicating that the observed modulation results from nanometer scale displacement of the mirror position. Furthermore, this agreement between the experimental results and eq 4 also indicates that the observed modulation results primarily from changes in the ED and MD emission rates, while the total radiative rate of the \(^{5}D_{0} \) excited state remains relatively constant. Finally, note that the optical phase shift resulting from such small displacements can readily be achieved at significantly higher speeds. In these experiments, the LDOS was varied using the mechanical...
motion in water of a macroscopic mirror mounted to a piezoelectric actuator, and therefore, the maximum modulation speed was limited by the mechanical resonance of the mirror-piezo assembly and drag induced coupling with the sample surface. Faster LDOS modulation could be achieved through other mechanical schemes, for example, using integrated piezoelectric or electrostrictive thin films, or any technique that can modulate the refractive index, for example, through field- or carrier-induced electro-optic effects or using phase change materials.

In conclusion, we have shown a proof-of-principle experiment demonstrating the sublifetime modulation of emission through dynamic control of the local optical environment. These results highlight that the excited state lifetime does not impose a fundamental limit on modulation speeds. Even with a constant excited state population (e.g., a saturated steady-state ensemble of emitters), emission can still be tuned at sublifetime speeds by varying the local optical environment. In such a system, light will be continuously emitted, but control over the LDOS can determine into which modes (defined by momentum, polarization, and wavelength) light is emitted. Here, we have focused specifically on wavelength variations in Eu, because of the stark differences in the LDOS for its spectrally distinct ED and MD transitions near a simple mirror. With this system, it was possible to observe variations even when collecting emission from a large set of radiation modes. The observed modulation could be significantly greater in a well-designed optical waveguide or cavity, where ED and MD variations would be enhanced, and emission would be primarily from Eu nanocrystals.

Finally, the optical modulation methods presented here can also work for any transition, whether ED or MD in nature, and with different waveguide modes. Sources of radiation − e.g., a saturated steady-state ensemble of emitters − can still be tuned at sublifetime speeds by varying the local optical environment. In such a system, light will be continuously emitted, but control over the LDOS can determine into which modes (defined by momentum, polarization, and wavelength) light is emitted. Here, we have focused specifically on wavelength variations in Eu, because of the stark differences in the LDOS for its spectrally distinct ED and MD transitions near a simple mirror. With this system, it was possible to observe variations even when collecting emission from a large set of radiation modes. The observed modulation could be significantly greater in a well-designed optical waveguide or cavity, where ED and MD variations would be enhanced, and emission would be primarily directed into a finite number of cavity modes. Such methods can be readily extended to other lanthanide ions exhibiting strong MD transitions, including trivalent erbium (Er³⁺). In addition to spectral control, dynamic LDOS modulation can also be used to tailor the direction and/or polarization of light emission, which could be especially useful for directing the emission of on-chip Er³⁺ LEDs into different waveguide modes. Finally, the optical modulation methods presented here can also work for any transition, whether ED or MD in nature, and are therefore applicable to other long-lived emitters, including silicon nanocrystals.

ASSOCIATED CONTENT

1. **Supporting Information**
Movie illustrating the dynamic modulation of the normalized emission spectra as a function of mirror position based on the experimental data shown in Figure 2a. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

*E-mail: rashid_zia@brown.edu.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors thank S. Cueff, C. M. Dodson, M. Jiang, J. Kurvits, D. Li, and D. Pacifi for helpful discussions. Financial support for this work was provided by the Air Force Office of Scientific Research (PECASE award FA-9550-10-1-0026) and the National Science Foundation (CAREER award EEC-0846466).

REFERENCES

