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Abstract: The enhanced optical forces induced by surface phonon-polariton 
(SPhP) modes are investigated in different silicon carbide (SiC) 
nanostructures. Specifically, we calculate optical forces using the Maxwell 
stress tensor for three different geometries: spherical particles, slab 
waveguides, and rectangular waveguides. We show that SPhP modes in SiC 
can produce very large forces, more than one order of magnitude larger than 
the surface plasmon-polariton (SPP) forces in analogous metal 
nanostructures. The material and geometric basis for these large optical 
forces are examined in terms of dispersive permittivity, separation distance, 
and operating wavelength. 
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1. Introduction 

Optomechanical devices [1, 2], especially those leveraging the optical forces produced by 
guide modes in photonic waveguides [3–6], have attracted great interest. In this context, the 
surface plasmon-polariton (SPP) enhanced optical forces in metal nanostructures have been 
thoroughly investigated in both theoretical [7–21] and experimental [22–31] studies. (For a 
detailed review of surface plasmon forces in the context of optical tweezers, see [29].) Similar 
to SPP modes supported by metals, polar dielectrics support surface phonon-polariton (SPhP) 
modes that can be used to guide and concentrate intense electromagnetic energy, creating a 
strong enhancement of optical forces. The investigation of SPhP enhanced optical forces may 
allow the extension of optomechanical devices into new material systems and frequency 
regimes. 

For example, silicon carbide (SiC) materials are widely used for their exceptional 
electronic, mechanical, and thermal properties. SiC is an important semiconductor with a 
large band gap and high thermal conductivity. Given its high Young's modulus to density 
ratio [32], SiC is an ideal material for high frequency mechanical resonators, and it has been 
explored for applications in nano-electro-mechanical systems (NEMS) [33–35]. SiC also 
exhibits unique optical properties that may make it ideally suited for optomechanical devices. 
As a polar dielectric, SiC supports strong SPhP resonances in the infrared region around 11 
μm [36]. These resonances have been the topic of considerable study in the near-field and 
nano-optics community for applications in high-resolution infrared microscopy [37, 38], 
coherent thermal emission [39], thermal radiation microscopy [40], thermal optical antennas 
[41], and dielectric metamaterials [42]. Compared to flexible and lossy metals, SiC has a 
considerably higher Young's modulus and lower optical damping constant. The longer 
wavelength SPhPs in SiC can also induce stronger coupling and larger optical forces for 
similarly sized structures. 

To highlight the similarities and differences between the optical properties of SiC and 
metallic materials, the plots in Figs. 1(a) and 1(b) show the complex permittivity for SiC and 
gold (Au). In particular, we plot the frequency-dependent relative permittivity εr(ω) of 6H-
SiC in the direction perpendicular to the principal axis [36] around 11 µm, and we compare 
this to the relative permittivity of Au in the visible range [43]. (For simplicity throughout this 
paper, we model SiC as an isotropic material with the complex permittivity shown here and, 
therefore, neglect the minor variations in SiC optical properties due to polytype and 
orientation.) Note that the real parts of the relative permittivity Re{εr(ω)} for Au and SiC are 
comparable over these two different spectral regimes. However, the imaginary part Im{εr(ω)} 
of SiC is significantly smaller than that of Au. This suggests that SiC nanostructures can 
support infrared SPhP modes that are very similar to the visible SPP modes of Au 
nanostructures, but with substantially lower optical losses. 
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Fig. 1. Comparison of the (a) real and (b) imaginary parts of the relative permittivity for Au in 
visible range and 6H-SiC in the direction perpendicular to the principal axis around 11 μm. 

In this paper, we examine the optical forces arising from SiC SPhP modes and Au SPP 
modes in three different geometries. First, under the quasistatic approximation, we calculate 
the optical forces between two spherical particles and investigate the effect of the complex 
permittivity. Next, the optical forces between two slab waveguides are simulated, from which 
the effect of the operating wavelength is studied and an approximate analytical explanation is 
derived. Finally, we calculate the optical forces in a more practical structure consisting of two 
free standing rectangular waveguides. Our simulation results show that the optical forces in 
SiC nanostructures are more than one order of magnitude stronger than those in similar Au 
nanostructures. 

2. Simulation methods and results 

2.1 Attractive optical forces between two spherical particles 

First, we investigate the optical force between two spherical particles with identical radius r0 
= 30 nm in an external electric field 0 ˆi tE E e zω=


. As shown in the inset of Fig. 2(a), the two 

spheres are placed in free space a distance 2d apart from each other along the z-axis such that 
there is a small gap width (w = 2d − 2r0) between them. 

We consider the case where the sphere radius is much smaller than the operating 
wavelength (r0 λ0), whereby retardation effects can be neglected and the problem becomes 
quasistatic. In this scenario, the two spheres will be polarized along the z-axis due to the 
displacement in opposite directions of positively-charged Si and negatively-charged C sites, 
inducing an attractive force between the two spheres. 

In the quasistatic limit, the Helmholtz wave equation reduces to Laplace’s equation. 
Following the method used by Aravind et al. [44], a general solution to Laplace’s equation 
can be obtained by separation of variables for the two-particle system in bispherical 

coordinates (µ, η, φ). In this coordinate system, the constant 1 2 2
0 0 0sin h ( / )d r rμ −= ± −  

defines spherical shells with radius r0 centered a distance d from the origin along the z-axis. 
Using the Maxwell stress tensor (MST), the force expression can be written as [9]: 
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

is the MST, S


is the surface of the sphere defined by 0μ , 0
nA are the expansion 

coefficients in the potential expression of the surrounding environment 
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permittivity, and nmax and mmax are the cutoff numbers for the respective summations. Here, 
we use nmax = mmax = 40, which is sufficient to confirm convergence of the summations. 

 

Fig. 2. (a) Magnitude of the attractive optical forces versus relative permittivity for a fixed gap 
width of 100 nm, r0 = 30 nm, and incident power intensity of 1 kW/cm2. The inset shows a 
sketch of the two spherical particles system. Dashed lines show the relative permittivity of Au 
(black) and SiC (red). (b) Attractive optical forces calculated for two Au and two SiC spheres. 

Due to the quasistatic approximation, the operating wavelength has only an indirect effect 
through the dispersive relative permittivity. We numerically investigate the effect of the 
complex permittivity on optical forces in this system. For example, as shown in Fig. 2(a) for a 
gap width w = 100 nm, we map the optical force versus both real and imaginary parts of 
relative permittivity in the range from −10 to −1.6 and 0.1 to 5 respectively. Figure 2(a) 
highlights the εr(ω) = −2 resonance condition for the optical force between two spherical 
particles in vacuum; this resonance is directly related to the εparticle = −2 εhost surface polariton 
resonance for spherical particles [45]. (The dipole moment of a spherical particle can be 

written as: ( ) ( )3
0 04 2dipole host particle host particle hostp E rπε ε ε ε ε= − +


, which exhibits a resonance 

when the denominator approaches zero.) When either the real or imaginary parts of the 
relative permittivity stray from the εr(ω) = −2 resonance, the magnitude of the optical force 
will dramatically decrease. For reference, we plot the relative permittivity of SiC (red dashed 
line) and Au (black dashed line) in Fig. 2(a) over the wavelength range from 10.66 to 11.5 μm 
and 465 to 637 nm, respectively. Note that the relative permittivity line of Au is far away 
from the resonance point, while that of SiC passes near the resonance region. The maximum 
force can be produced by operating at λ0 = 10.73 μm, where SiC's relative permittivity εr(ω) = 
−2 + 0.16i is very close to the pure resonance condition; however, a similar relative 
permittivity cannot be obtained for Au at any wavelength. In order to clarify and compare the 
magnitude of the optical force in this structure for SiC and Au, we extract the optical force 
along the red and black dashed lines in Fig. 2(a) and plot them in Fig. 2(b). It clearly shows 
that the maximum optical force for SiC is over two orders magnitude larger than that for Au. 
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In addition to a fixed gap width, we also investigated the optical forces as a function of 
varying gap width. These calculations were performed at four different infrared wavelengths 
for SiC and four corresponding wavelengths for Au, in which Re{εr(ω)} are equal but 
Im{εr(ω)} differs. The inset of Fig. 3 shows that at short gap widths (w < 30 nm) for certain 
values of relative permittivity with small imaginary parts, the optical force doesn’t decrease 
monotonically as the gap width increases, but rather, exhibits several resonant peaks. This is 
due to a matching of the relative permittivity and gap width to collective modes [14–16, 18]. 
However, at large gap widths (w > 30 nm), as the gap width is increased, the interaction 
between two spheres becomes weaker and the optical forces monotonically decrease. As 
shown in Fig. 3, the optical forces of SiC (red solid line) and Au (red dashed lines) at 
Re{εr(ω)} = −10 overlap with each other; when Re{εr(ω)} is far from the resonance 
condition, the Im{εr(ω)} has little effect on optical forces. As Re{εr(ω)} approaches the εr(ω) 
= −2 resonance condition though, the Im{εr(ω)} has a much larger effect. Compared to the 
optical forces for Au at Re{εr(ω)} = −2 (black dashed line), those for SiC (black solid line) 
are over two orders stronger. Notably, this large optical force enhancement is also sustained 
for a large range of gap widths (30-500 nm). 

 

Fig. 3. Optical forces between two identical spherical particles with radius 30 nm versus gap 
width. Incident power intensity is 1 kW/cm2. The inset shows the optical forces for small gap 
widths. Dashed lines show the optical forces calculated for Au particles for illumination 
wavelengths of 476.5 nm (black), 501 nm (green), 543 nm (blue), and 637 nm (red). Solid lines 
show the optical forces calculated for SiC particles for illumination wavelengths of 10.73 μm 
(black), 10.88 μm (green), 11.12 μm (blue), and 11.5 μm (red). 

2.2 Optical forces between two slab waveguides 

The second structure we consider is composed of two parallel slab waveguides as shown in 
Fig. 4(a), where d defines the thickness of the slabs and w is half of the gap width between 
them. SPhPs and SPPs in this structure exist as transverse magnetic (TM) modes propagating 
along the z-axis. Only Hx, Ey and Ez field components are non-zero and the modes are defined 
according to the symmetry of the electric field component Ez, with respect to x-z plane, as 
shown in Figs. 4(b) and 4(c). The wave vector is given by ˆˆi zi yik k z ik y= −


, where the subscript 

i = 1 denotes the slabs (SiC or Au) and i = 2 is the surrounding material (air in our 
calculations). The time averaged optical force yF   between the two slabs is proportional to 

Tyy component of the MST, which can be written as: 

 ( ) ( )* * * * * * *
0 0 0 0 0

1 1
.

2 2yy y y y y z z x x y y z z x xT E E E E E E H H E E E E H Hε ε μ ε μ   = − + + = − −   
 (3) 
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Fig. 4. (a) Sketch of the five-layer, coupled two-slab waveguide system. (b) and (c) show 
schematic representations of the field profiles for the antisymmetric and symmetric modes. (d) 
and (e) compare the magnitude of optical forces for SPhPs in SiC and SPPs in Au for the: (d) 
attractive antisymmetric mode and (e) repulsive symmetric mode. Solid curves are calculated 
by the iteration method whereas empty circles are the results of FDFD calculation. 

Two different methods are applied to obtain field profiles. In the first method, the field 
profiles are obtained using a vectorial magnetic field finite-difference frequency-domain 
(FDFD) mode solver [46]. In the second method, we use an iteration technique [47] to solve 
the complex transcendental dispersion equation for TM modes. For the antisymmetric mode 
in a five layer system, the dispersion equation is [19]: 

 ( )
( ) ( )

( ) ( )

1 2
1 1

2 1 1 2
2

1 21 2
1 1

1 2

sin h cos h

tan h .
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y y
y y

y
y

y yy
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k k
k d k d

k
k w

k kk
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ε ε ε
ε

ε ε

+
= −

+
 (4) 

We selectively choose the following form for the iteration function due to its rapid 
convergence ( 2ykΔ  < 1 m−1 in less than 20 iterations for most data points): 
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For the symmetric mode, the same procedure is followed with 2coth( )yk w being substituted 

for 2tanh( )yk w in Eqs. (4) and (5). The field profiles are then calculated following the 

formalism in [19]. 
We calculate the optical forces for the attractive antisymmetric and repulsive symmetric 

modes in SiC and Au operating at wavelengths for which Re{εr(ω)} = −5 and −10. These 
values of the relatively permittivity are specifically chosen to be far from the resonance 
condition for a planar surface (i.e. Re{εr(ω)} = −1), so that we can study the effect of optical 
wavelength and also that the SPP and SPhP modes will have appreciable propagation lengths. 
The thickness of each slab waveguide in our simulation is 20 nm, and the average value of the 
power distributed over the x-axis is 1 mW/µm. In Figs. 4(d) and 4(e), the optical forces 
calculated by the iteration method are shown in solid curves while the FDFD results are 
plotted by empty circles. Good agreement is achieved between the results of both methods. 
The behavior of the optical force versus the gap width is consistent with the analysis of Woolf 
et al. [19] for SPP enhanced forces in coupled metallic waveguides. There are two main 
regimes: for large gap widths, the optical forces in antisymmetric and symmetric modes have 
nearly equivalent magnitudes; at small gap widths, the magnitude of the attractive force for 
the antisymmetric mode shows an exponential dependence on gap width, whereas the 
repulsive force for the symmetric mode is only weakly related to gap width. The distinct 
behaviors in these two regimes can be understood by the penetration depth δ2 = 1/Re{ky2} of 
the electromagnetic fields into the gap. For a single slab placed in air with thickness d, the 
dispersion relation for the symmetric mode of this three layer system simplifies 
to 1 1 1 2tanh( / 2) / ( )y y r yk d k kε= − . In a sufficiently thin slab 1( 1 / )yd k< , the solution to the 

dispersion relation is 2 12 / ( )y rk dε≈ − , which corresponds to a penetration depth 

of 2 1Re{ } / 2r dδ ε≈ − . For w < δ2, strong mode coupling between the two slabs leads to 
different gap width dependencies for optical forces from the antisymmetric and symmetric 
modes; while for w > δ2, the mode coupling becomes weak, and the optical forces in both 
modes are almost identical in magnitude. Despite the large difference in operating 
wavelengths for SiC and Au, this simple analysis predicts that the crossover point between the 
two regimes should occur for similar gap widths, i.e. 2δ2 = 100 (200) nm for Re{εr} = −5 
(−10), which is consistent with Figs. 4(d) and 4(e). 

Compared to the optical forces for Au at wavelengths of 543 nm and 637 nm, the optical 
forces for SiC with similar real parts of relative permittivity are around 20 (50) times stronger 
for the antisymmetric (symmetric) modes at small gap widths (w < δ2). To understand the 
underlying reason for this enhancement, we analytically investigate the effect of wavelength 
on the optical forces for both symmetric and antisymmetric modes. In the following analysis, 
we focus on small gap width structures w < δ2, where largest forces are seen and which are 

equivalent to ky2w < 1. For long wavelengths, λi 2π/|kz| where 0 / | |i riλ λ ε≡ , kz ≈ky1 ≈ky2 

can be obtained. Furthermore, for a sufficiently small thickness d, we can make the 
assumption that ky1d < 1. Applying the above approximations to Eq. (4) and approximating 
tanh(x) ≈x, we obtain the following expression for the antisymmetric mode: 
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Similarly, for the symmetric mode under the same assumptions, we obtain: 
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Due to the assumption |kz|  2π/ λi and the relation Ey = −kzHx/(ωε) derived from 
Maxwell’s equations, we find that * * 2 2

0 0 0/ ( ) | | / 1y y x x zE E H H k kε μ = >> . Thus, the Hx 

magnetic field contribution to the optical force can be neglected compared to 
the yE contribution, which reduces the MST in Eq. (3) to * *

0 ( ) / 2yy y y z zT E E E Eε≈ − . 

Equations (6) and (7) show that the wavevector k


is independent of wavelength under the 

above assumptions. Interestingly though, both *
y yE E  and *

z zE E are directly proportional to 

the wavelength, as can be seen from the formalism of Woolf et al. in [19]. (Note that the Ey 
and Ez terms both contain an explicit λ0 dependence through the frequency ω, as shown in 

Eqs. (4) and (5) in [19], but there is an additional 01 / λ  term from the field amplitude 

coefficients, see Eq. (13) in [19]. Therefore, *
y yE E  and *

z zE E both scale linearly with λ0.) 

From these derivations, we clearly see that the optical force is approximately proportional to 
the operating wavelength under the assumptions that (i) the penetration depth is larger than 
the structure size (w < δ2 and d < δ2) and (ii) we are operating at long wavelengths 
(λi 2π/|kz|). 

In Figs. 5(a) and 5(b), we consider a hypothetical material with relative permittivity εr = 
−10 + 2i for a range of wavelengths and compare the magnitude of optical forces calculated 
by the iteration method (solid lines) and our analytical approximation (empty circles). For 
long wavelengths, the analytical approximation accurately predicts the optical forces for both 
the antisymmetric and symmetric cases, and thus, we find that the optical forces do indeed 
scale linearly with operating wavelength. For small operating wavelengths, the analytical 
approximation also accurately predicts the forces calculated for the antisymmetric case, but as 
the wavelength is no longer large enough compared to 2π/|kz|, the approximation begins to fail 
and overestimates the forces for the symmetric mode. For completeness, it should also be 
noted that this approximation fails for both antisymmetric and symmetric modes when the 
relative permittivity approaches the surface polariton resonance condition (εr = −1); for small 
magnitudes of the relative permittivity (e.g. εr ≈−2), minor errors in the approximate k


vector 

have a disproportion impact on the predicted forces, and thus the analytical approximation 
diverges from the iteration result. (Also, for small magnitudes of the relative permittivity, Eq. 
(6) will no longer be a good approximation for the antisymmetric modes, because ky1d < 1 
will not be satisfied.) 

 

Fig. 5. Magnitude of the optical forces for the (a) attractive antisymmetric mode and (b) 
repulsive symmetric mode calculated by the iteration method (solid lines) and analytical 
approximation (empty circles) for a hypothetical material with relative permittivity εr = −10 + 
2i at different operating wavelengths. 
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With the above calculations, we have shown that the optical forces between SiC slab 
waveguides are more than one order of magnitude larger than those for Au slab waveguides. 
Furthermore, we have derived a simple analytical approximation that illustrates how this 
optical force enhancement can be directly attributed to the increased operating wavelength for 
SiC. Accordingly, the observed 20-50 fold enhancements shown in Fig. 4 are consistent with 
the ~20 fold increase in operating wavelength from ~500 nm for Au to ~10 μm for SiC. 

2.3 Optical forces between two rectangular waveguides 

Finally, we investigate the optical forces between two rectangular waveguides, as shown in 
Fig. 6(a), which represent a more practical geometry for integrated optical circuits. The cross 
section of each waveguide is set to be 310 nm by 310 nm. We use the same FDFD method 
[46] discussed in the previous section to solve for the waveguide modes and obtain the field 
profiles. Ez components of the fundamental antisymmetric and symmetric modes are shown in 
Figs. 6(b) and 6(c) respectively. Note that the fields in the antisymmetric mode are more 
confined than those in the symmetric mode, and consequently, the antisymmetric mode 
exhibits much stronger optical forces. Therefore, in this section, we focus on the optical forces 
corresponding to the antisymmetric mode, which are attractive in nature. 

 

Fig. 6. (a) Sketch of the coupled two rectangular waveguide structure, where each waveguide 
has a square cross section defined by the lateral dimension a = 310 nm. (b) and (c) show the Ez 
field profiles for antisymmetric and symmetric mode. (d) compares the magnitude of the 
attractive optical force for the antisymmetric mode in SiC and Au. 

Similar to the simulation for the slab waveguides, we again calculate the optical forces for 
a range of operating wavelengths that correspond to the same Re{εr(ω)} for SiC and Au. 
Figure 6(d) shows the resulting optical forces for the antisymmetric mode. As compared with 
the SPP optical forces in Au at λ0 = 543 and 637 nm, the SPhP optical forces in SiC at 11.12 
and 11.5 μm are enhanced by a factor of 20. Based on the magnitude of this enhancement, it is 
likely that its origin stems from a wavelength scale enhancement similar to the one derived 
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analytically for the slab case in Section 2.2. Given the additional geometric complexity of the 
modes in this structure though, we are unable to provide a similar closed form approximation. 

Such SPhP waveguides provide both stronger optical forces and lower optical losses than 
plasmonic waveguides. Similar to recent works on hybrid plasmonic waveguides [20, 48, 49], 
one could envision creating a hybrid phonon-polariton waveguide by combining a polar solid 
(e.g. SiC) with a nonpolar dielectric. Note that such hybrid waveguides could combine the 
advantages of low-loss photonic waveguides with strong confinement polariton waveguides, 
and thus, could help tailor a tradeoff between losses and force enhancement. Nevertheless, 
due to the material and wavelength advantages highlighted in this work, SPhPs by themselves 
already provide significant improvements in terms of both enhanced optical forces and 
reduced losses. More importantly, SPhPs can help expand optomechanical systems to new 
materials, such as SiC which present superior mechanical properties to the metals used in 
plasmonic and hybrid plasmonic waveguides. 

3. Conclusions 

We have investigated the SPhP enhanced optical forces in three different geometries of SiC 
nanostructures and compared them to the SPP enhanced forces in identical Au nanostructures. 
For spherical particle dimers in the quasistatic approximation, we isolated the effect of 
complex permittivity and demonstrated that the near resonance optical forces in SiC around 
11 μm wavelengths can be 2 orders of magnitude larger than those for Au at visible 
wavelengths. For parallel slab waveguides, we demonstrated that, even off resonance (i.e. 
Re{εr(ω)} = −5 and −10), the optical forces in SiC are still 20 times larger than those 
calculated for Au. Furthermore, we analytically showed that the optical force is roughly 
proportional to the operating wavelength under relevant conditions and, therefore, related the 
20 fold enhancement factor to the 20 fold increase in operating wavelength from ~500 nm for 
Au to ~10 μm for SiC. Similarly, in the more practical case of two rectangular waveguides, 
our simulations again showed that the optical forces in SiC could be enhanced by a factor of 
20 as compared to the optical forces in Au. Note that the specific operating wavelengths 
considered in this paper (e.g., 10.7 μm and 11.1 μm) can be readily accessed using tunable 
carbon dioxide isotope (13CO2) lasers. Combined with the unique mechanical properties of 
SiC, especially its high stiffness, these results suggest that the enhanced SPhP forces make 
SiC a very promising material for infrared optomechanical devices. 
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